Lithium Dendrite Prevention for Lithium-Ion Batteries

Wu Xu and Ji-Guang Zhang

Pacific Northwest National Laboratory

2017 DOE Vehicle Technologies Program Review

June 8, 2017

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start date: Oct. 2015

End date: Sept. 2018

Percent complete: 70%

Budget

- Project funding
 - DOE share 100%
- Funding received in FY16: \$400k
- Funding received in FY17: \$340k

Barriers addressed

- Growth of lithium dendrites
- Low Coulombic efficiency
- Low charge current density

Partners

- Argonne National Laboratory
- U.S. Army Research Laboratory

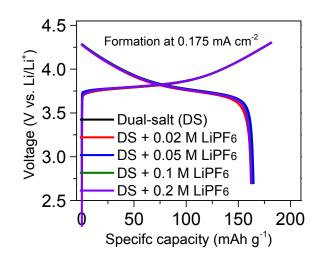
Relevance/Objectives

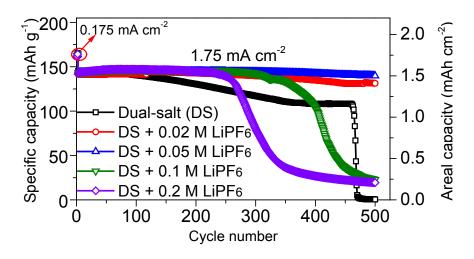
- Enable lithium (Li) metal to be an effective anode in rechargeable Limetal batteries using conventional 4-V Li-ion intercalation cathodes for long cycle life at a reasonably high current density.
- Explore various factors that affect the morphology of Li deposition.
- Develop nonaqueous electrolytes and additives to protect Li metal anode and to increase Li Coulombic efficiency (CE).
- Improve the stability and the conductivity of solid electrolyte interphase (SEI) layer on Li metal anode to enable long cyclability.
- Suppress Li dendrite formation on Li-metal anode.

Milestones

Date	Milestones	Status
Dec. 2016	Verify the formation of a transient high Li ⁺ - concentration electrolyte layer during fast discharging by direct microscopic observation	Completed
March 2017	Identify the effects of dual-salt electrolytes on Li metal protection during fast charging	Completed
June 2017	Identify new electrolytes that are stable with both Li and high voltage cathode	On track
Sept. 2017	Further Increase CE of Li cycling in the new electrolyte	On track

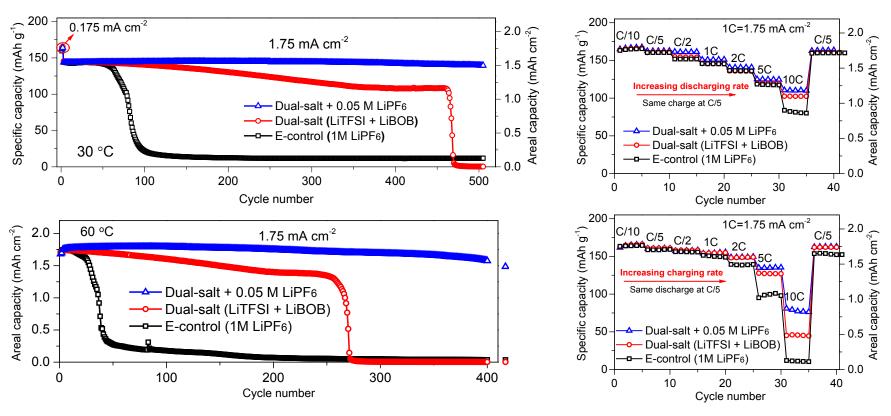
Approach

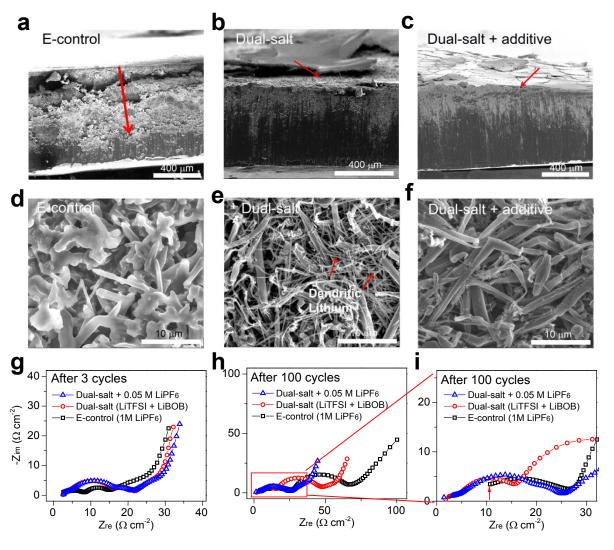

- Use additives in dual-salt electrolytes to form highly conductive SEI, protect Li metal, enable long cycle life and fast chargeability of Li metal batteries.
- Use in-situ ToF-SIMS to detect if a transient high-concentration electrolyte layer is formed on Li metal anode surface during fast discharge process of Li metal batteries.
- Develop new electrolyte formulations (including salts and additives in carbonate solvent mixtures) to achieve high Li CE and stable with high voltage cathode.



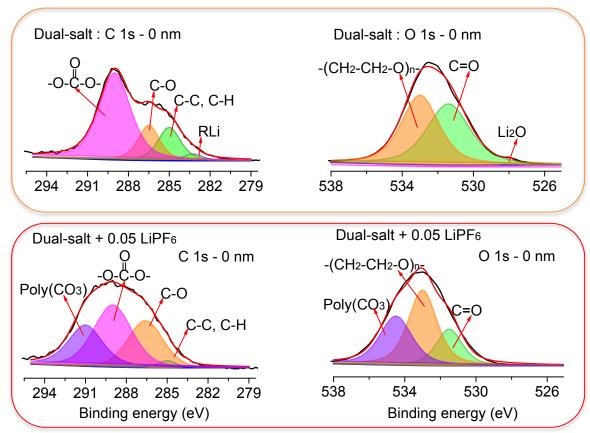
Selection of additive and optimization of LiPF₆ additive amount on Li metal battery performance

LiPF₆
$$\rightarrow$$
 LiF + PF₅
LiPF₆ + H₂O \rightarrow LiF + 2HF + POF₃


Decomposition products of LiPF₆ additive act as catalysts to initiate the ring-opening polymerization of EC molecules to form polyethers, polycarbonates, etc.

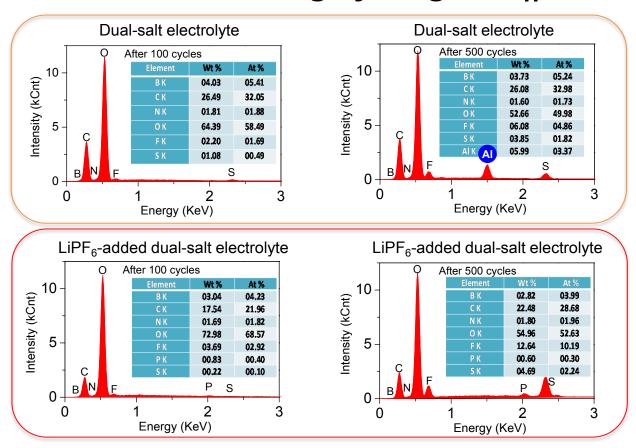

- Li||NMC442 (1.75 mAh cm⁻²), 2.7 ~ 4.3 V
- Dual-salt (DS) electrolyte: 0.6 M LiTFSI + 0.4 M LiBOB in EC-EMC (4:6 by wt.)
- ✓ LiPF₆ additive at the optimum content (0.05 M, i.e. 0.6% by wt.) is the key to achieve enhanced long-term cycling stability.

Long-term cycling and rate performances of Li||NMC batteries with different electrolytes

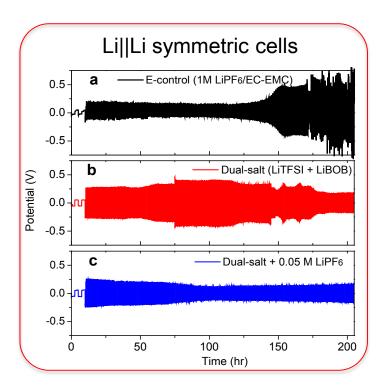

- ✓ LiTFSI-LiBOB electrolytes allow the Li||NMC cells to show much better cycling performance than LiPF₆ electrolyte at fast charging/discharging current density (1.75 mA cm⁻²) and room temperature (30°C)/elevated temperature (60°C).
- ✓ LiPF₆ additive at optimum (0.05 M) further improves the charge/discharge rate capability of the dual-salt electrolyte.

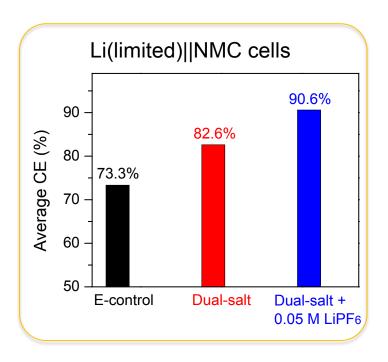
Characterization of morphological behaviour and interfacial evolution of Li metal anodes

- ✓ LiPF₆ additive reduces the corrosion of Li metal, leads to the formation of uniform fibrous Li wires, and mitigates the growth of chaotic Li dendrites.
- ✓ LiPF₆ additive induces the generation of a dense, compact and highly conductive SEI layer on Li metal anode.

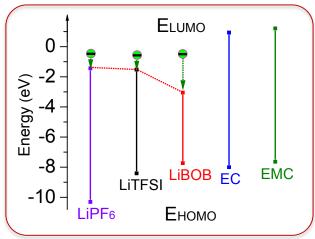

Compositions of the SEI layers formed on cycled Li metal anodes

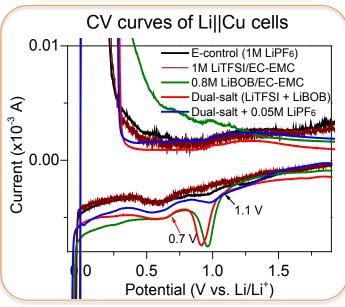
- ➤ LiPF₆ additive induces the generation of an SEI layer enriched with polycarbonate constituents.
- Polycarbonates can keep good adhesion of SEI layer together and onto Li anode to well protect Li metal.

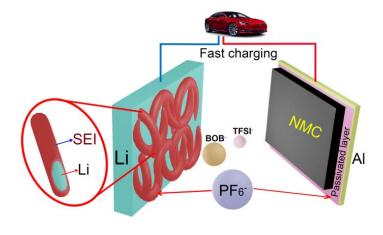

Evolution of compositions in SEI layers on cycled Li metal anodes after long cycling of Li||NMC cells


- ✓ LiPF₆ additive mitigates the consumption of electrolyte for SEI formation.
- ✓ LiPF₆ additive is also beneficial for stabilizing Al current collector.

Electrochemical analysis on effect of LiPF₆ additive on stability of LiTFSI-LiBOB dual-salt electrolyte

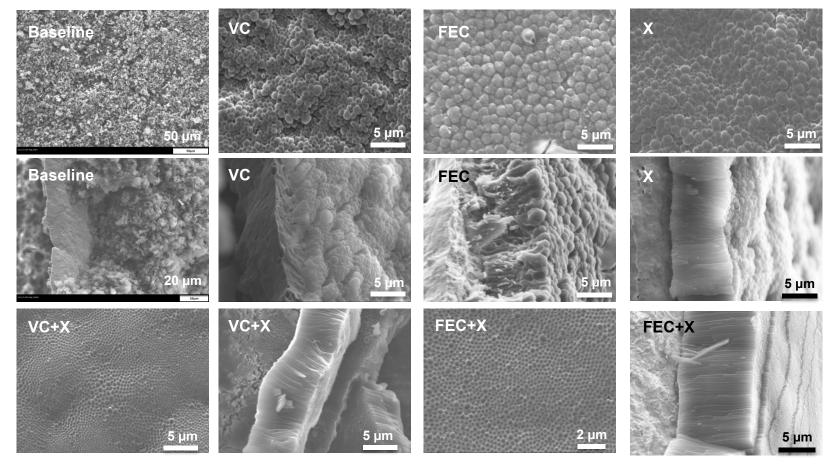

➤ LiPF₆ additive improves the stability and conductivity of SEI layer on Li meal.




- ✓ LiPF₆ additive improves the average CE of Li metal to 90.6%.
- However, the Li CE is still not high enough and the electrolyte needs further development.

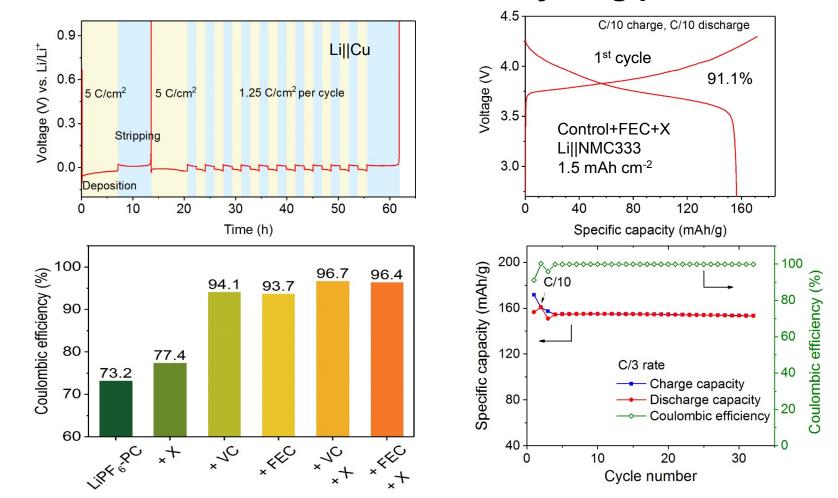
Pacific Northwest
NATIONAL LABORATORY

Schematic illustration of LiPF₆ additive improving Li||NMC cell performances



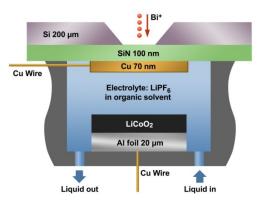
- ➤ LiBOB first decomposes at both Li anode and NMC cathode to form SEI films.
- ✓ LiPF₆ additive mitigates the reductions of Li salts, especially LiBOB.
- ✓ LiPF₆ additive induces the generation of a robust and conductive SEI layer enriched with polycarbonate constituents.
- ✓ LiPF₆ additive also stabilizes Al current collector.

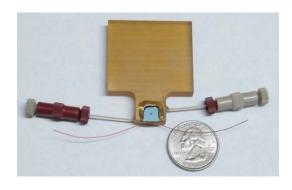
Pacific Northwest
NATIONAL LABORATORY

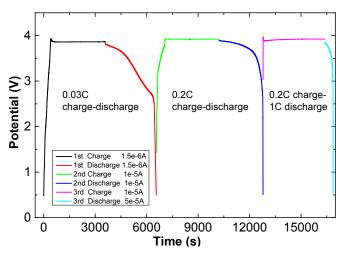

Effect of additives on morphologies of deposited Li metal

- Li deposited on Cu foil at 0.1 mA cm⁻² for 15 h
- Baseline electrolyte: 1 M LiPF₆ in PC
- VC+X and FEC+X additive mixtures lead to more smooth, uniform and dense nanorod Li metal deposition.

Effect of additives on Li CE and cycling performance


- ✓ Additives especially additive mixtures greatly increase Li CE.
- ➤ Li||NMC333 cell has demonstrated a stable cycling with an efficiency of 99.9% (Testing is continued).




Proudly Operated by Battelle Since 1965

In-situ ToF-SIMS analysis on Li anode surface during fast and slow discharge rates

- Electrochemical cell for ToF-SIMS measurement
 - Cu||LiCoO₂ with the electrolyte of 1.0 M LiPF₆ in EC-EMC
 - Li was first deposited on Cu substrate by charging the cell at a slow rate.
 - Then the cell was discharged at fast and slow rates.

- Analyzed SEI components on Li anodes during fast and slow discharge rates.
- Difference in Li⁺-content in SEI on Li anode from fast and slow discharge rates (1C vs. C/5) is small → A concentrated electrolyte layer was not observed.
 Pacific Northwest

Responses to Previous Year Reviewers' Comments

➤ The project was not reviewed in 2016.

Collaboration and Coordination with Other Institutions

Partners:

- Argonne National Laboratory: Provided coated NMC cathode sheets for testing.
- Army Research Laboratory: Conducted DSC and ionic conductivity measurements.

Remaining Challenges and Barriers

- Low Coulombic efficiency of Li metal anode during cycling.
- Cycling stability of Li metal batteries with high loading cathodes.
- Cycling stability of Li metal batteries with limited electrolyte amount.
- Li metal dimension or volume change during charging and discharging cycles.

Future Work - FY2017/18

- Continue to evaluate electrolytes in 4-V Li-metal batteries with high cathode loading and at relatively high current density cycling.
- Continue to develop electrolytes with Li Coulombic efficiency over 99% and stable at 4.5 V.
- Develop ionic conductive protection layer on Li metal anode to reduce parasitic reactions between Li metal and electrolytes.

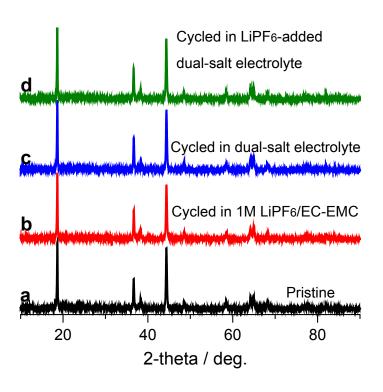
Any proposed future work is subject to change based on funding levels.

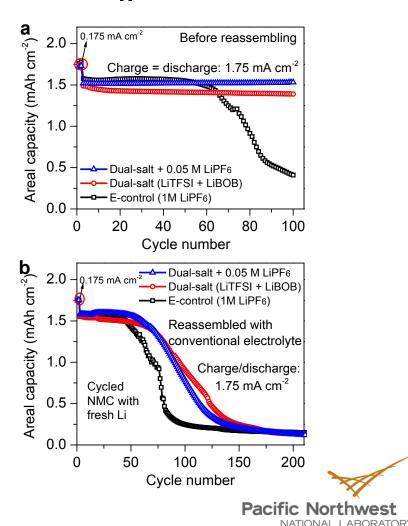
Summary

- ✓ Developed LiPF₆ as an effective additive in LiTFSI-LiBOB dual-salt electrolytes to achieve fast chargeability and long-term cycling stability of Li metal batteries.
 - ✓ Dense and compact fibrous Li deposition is obtained.
 - ✓ Highly conductive SEI is formed.
 - ✓ Polycarbonate species are generated in SEI to keep good adhesion of SEI layer onto Li metal.
 - ✓ Good protection of Li metal anode is achieved.
 - Li CE is improved, but it needs further improvement.
- ✓ Developed additive mixtures (VC+X and FEC+X) to significantly improve morphologies of deposited Li metal and Li CE.
 - ✓ Smooth, uniform and dense nanorod Li metal deposition.
 - ✓ Increased Li CE from 73% to near 97%.
- Analyzed SEI components on Li anodes during fast and slow discharge rates.
 - > A concentrated electrolyte layer was not observed.

Acknowledgments

- Support from the DOE Vehicle Technologies Office Advanced Battery Materials Research program is greatly appreciated.
- Team Members:

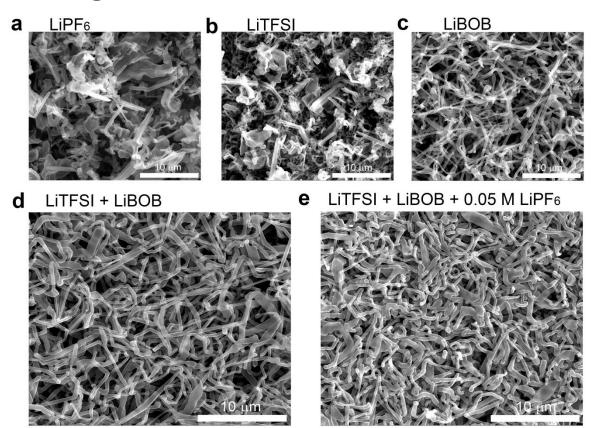

Jianming Zheng, Shuhong Jiao, Xiaodi Ren, Donghai Mei, Mark H. Engelhard, Xing Li, Zihua Zhu, Xiaofei Yu


Technical Backup Slides

Analysis on cycled NMC cathodes and cycling performance of reassembled Li||NMC cells

- LiPF₆ additive shows limited effect on the NMC cathode materials, especially during early stage of cycling.
- ➤ LiPF₆ additive should mainly improves the stability of Li metal anode.

Impedance data of Li||NMC cells using different electrolytes after 100 cycles

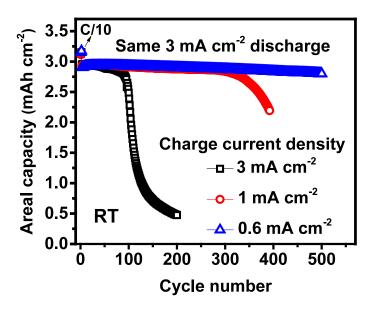

	3 rd cycle resistance		100 th cycle resistance	
	(ohm cm ⁻²)		(ohm cm ⁻²)	
	R_{e}	R _{interfacial}	R_{e}	R _{interfacial}
E-control	2.0	11.7	9.0	49.2
Dual salt	2.2	17.1	2.2	40.8
Dual salt + 0.05 M LiPF ₆	2.2	16.1	2.2	20.1

- ➤ The intercept of the high frequency response with the real axis is an indication of the electrolyte resistance (R_e).
- ➤ The intermediate-to-high-frequency semicircles are related to the charge transfer resistance (R_{ct}) in the electrode/electrolyte interface and the passivation surface film—the so-called SEI layer resistance (R_{sf}).
- \succ The total of R_{ct} and R_{sf} is considered the interfacial resistance (R_{interfacial}).
- ➤ The low-frequency tail is associated with the Li⁺ ion diffusion process in the solid electrode.
- ➤ LiPF₆-added LiTFSI-LiBOB electrolyte results in low resistances after long cycling.

NATIONAL LABORATORY

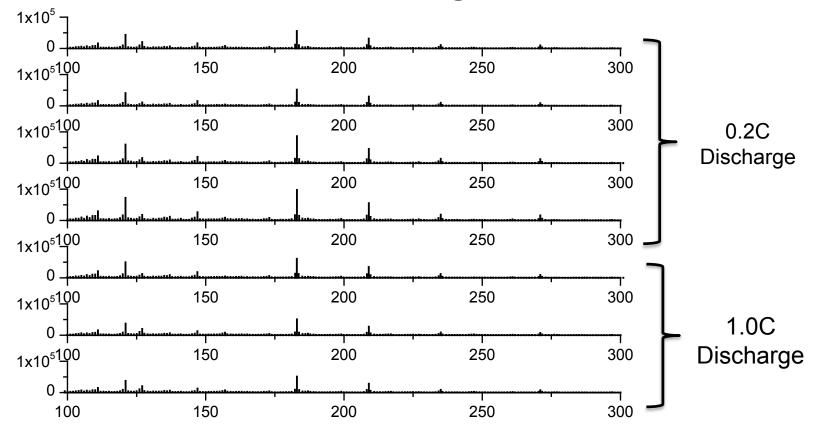
Morphologies of deposited Li metal in electrolytes containing different salts and additive

- · Li||Cu cells.
- Li deposition on
 Cu at 1.75 mA
 cm⁻² for 1 h.
- EC-EMC solvent.
- Total 1.0 M salt concentration.



- LiPF₆ and LiTFSI electrolytes lead to chaotic and dendritic Li growth.
- ✓ LiBOB based electrolytes result in fibrous and uniform Li growth.
- ✓ LiPF₆ additive in dual-salt electrolyte enables dense and compact Li growth.

 p



Long-term cycling performance of Li||NMC cells with a high areal loading NMC cathode at 30°C

- Li||NMC cells with a high areal loading NMC cathode of 3.0 mAh cm⁻².
- Optimal LiPF₆-containing LiTFSI-LiBOB electrolyte.
- ➤ 1C charge → 100 stable cycles.
- ➤ C/3 charge → 300 stable cycles.
- C/5 charge → at least 500 stable cycles.
- ✓ The optimized electrolyte enables good cyclability of Li metal batteries with a high loading cathode.

ToF-SIMS spectra of the component signals during slow and fast discharge rates

➤ The spectra of the electrolyte signals (including EC+Li, 2EC+Li, and 3EC+Li) do not show any significant difference between the two discharge rates.

